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COMMENT 

Loop-erased self-avoiding random walk and the Laplacian 
random walk 

Gregory F LawlertS 
Courant Institute of Mathematical Sciences, 251 Mercer St, New York, NY 10012, USA 

Received 13 January 1987 

Abstract. We comment that the Laplacian random walk with 7 = 1, recently introduced 
by Lyklema and Evertsz, is the same process as the loop-erased self-avoiding random walk 
analysed previously by the author. Some rigorous results about this process are reviewed. 

Attempts to understand the nature of the excluded volume effect on random walks 
have produced a number of measures on self-avoiding walks (SAW) which differ from 
the usual counting or uniform measure where every possible walk of a fixed length is 
given the same statistical weight. One major difficulty with the counting measure, 
which is the natural measure from the viewpoint of equilibrium statistical mechanics, 
is that it is not a kinetically growing model, i.e. the measure on ( n  + 1)-step walks does 
not come from a conditional measure on n-step walks. A number of kinetically growing 
models have been introduced, none of which are exactly the same as the usual SAW, 
and it is of interest to ask how significant the difference is. In particular, are the walks 
in the same universality class as the usual SAW and, if not, d o  they at least have the 
same critical dimension and  are the exponents in other dimensions close? 

The author (Lawler 1980) introduced one of the first new measures by considering 
a measure induced on SAW by erasing loops from the paths of simple (unrestricted) 
random walks. It was shown that this process could also be considered as a kinetically 
growing random walk with a certain non-Markov transition probability. For this 
process a number of mathematically rigorous results have been obtained (Lawler 1980, 
1986): the critical dimension is four (as is expected for the usual SAW); the process 
has long-range Gaussian behaviour for d > 4; and, for d = 4 ,  there is Gaussian 
behaviour with a logarithmic correction term. In recent articles this process has been 
reintroduced by Lyklema and Evertsz (1986a, b)  and Lyklema er a1 (1986) under the 
name of the Laplacian random walk with 7 = 1 (the latter authors actually define a 
one-parameter family of walks depending on 7). Because it is not obvious that the 
processes are the same, we will sketch the argument from Lawler (1980), using some 
of the notation of Lyklema and  Evertsz, that shows the equivalence. We then summarise 
some of the rigorous results about the model. 

We start with a quick definition of the Laplacian random walk as defined by 
Lyklema and  Evertsz. Consider the integer lattice Z d  and let R be a (large) number. 
If d > 2 ,  R may be chosen to be infinity; for d = 2 ,  R must be finite. We define a 
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growing self-avoiding random walk by specifying the transition probability which tells 
how to get an ( n  + 1)-step walk from an n-step walk. We assume n + 1 < R. Assume 
an n-step walk is given, say w = [ w ( O )  = 0, . . . , w (  n)], where w (  i) denotes the position 
of the walk after i steps. Let O R ( x )  be the function on Zd satisfying 

@ R ( X ) = O  X E  { w ( O ) ,  . * .  , w ( n ) )  ( l a )  

@ R ( X )  = 1 maxlxil 3 R ( 1 b )  

where x = (x,,  . . . , xd); and, for all other x,  

That is, Q R  is the function, harmonic with respect to the discrete Laplacian, with 
boundary conditions 0 on the path and 1 for x outside the box of size R. (If d > 2 
and R = 00 the second boundary condition is 1 at CO.) Then the Laplacian random 
walk with parameter 71 is the walk with transitions 

In the above, x = w ( n )  and the above holds for \ x - y \ =  1. By standard facts about 
simple random walks (see, e.g., Spitzer 1976), the solution to ( l a ) - ( l c )  is 

aR(x) =probability that a simple random walk starting at x hits the boundary 
of the box of size R before hitting { w ( O ) ,  . . . , w ( n ) }  ( 3 )  

or, if d > 2, 

= @.,(XI 

= probability that a simple random walk starting at x never enters 
{ w ( O ) ,  ' * a ,  w ( n ) ) .  

It is easy to show for d > 2 that @(x) = limR+a Q R ( x ) .  It is not so obvious, but follows 
from a theorem of Kesten and Spitzer (1963), that for d = 2 we can define @(x) = Om(x) 
by 

Q(x)  = lim QR(x)(log R )  
R" 

and use this for the transitions. Hence for d = 2 we can choose R = CO if we mean it 
in the above sense. 

We now define the loop-erased walk and sketch the argument to show that it is 
the same as the Laplacian random walk with 71 = 1. Section 3 of Lawler (1980) gives 
the argument for d > 2 ,  R = CO; for completeness we will perform here the case R < CO. 

Essentially what we will do is take a simple random walk and erase the loops as 
illustrated in figure 1. To make this precise, let R <CO and n < R be given. We define 
a measure on n-step SAW as follows: consider simple random walks starting at 0 and 
ending when they hit the boundary of the box of size R, i.e. at the first point 
x = (x , ,  . . . , xd) with max, ]xi] 2 R. Note that the walk must take at least R steps to 
get to the boundary. We will denote such a simple walk by & =  [((O),  . . . , ( ( J ) ] ,  
reserving w for self-avoiding walks. For such a simple walk & with ((O)=O, 
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Figure 1. Illustration of loop-erasing procedure for d = 2 and R < oc. 

maxi l.Ei(J)I 3 R, max, l&(j) l< R, j = 0,. . . , J - 1 ,  we will assign a SAW as follows. If 6 
is self-avoiding we assign itself, otherwise let 

T = inf{j > 0: 6( j )  = 6(  i) for some 0 6 i < j }  

U =the i for which 6( i )  = 6( 7). 
Then send 6 to the j= ( J  - ( T - U))-step path f given by 

Note that f is a j-step walk whose first exit from the box of size R is at the j step 
(and hence j2 R ) .  If f is self-avoiding we stop; otherwise, we perform this process 
on 6 Eventually, we will obtain a self-avoiding walk w of length at least R. We assign 
6 - 0 ,  and we have the measure on SAW given by 

@R ( w ) = P{ 6 1 6 * } 

where P denotes the probability measure on simple random walks. By considering 
only the first n steps of each w, we have a measure @R,,n on n-step SAW. 

What we will show is that PR,n is the same measure as that given by the transition 
probability ( 2 )  with 7 = 1. We first note that by the Markov property for simple random 
walks, if U ,  = [ w ( O ) ,  . . . , w ( n ) ]  is an n-step SAW and Q R  is the solution to ( l u ) - ( l c ) ,  
then 

1 
- c @R(w(n)Se)  2d l e l = l  

= probability that a simple random walk starting at w (  n )  
leaves the box of size R before hitting 
{ w ( O ) ,  . . . , w(n)} (not counting the 0th step). 

If = [ w ( O ) ,  . . . , w ( n ) ,  w ( n  + l ) ]  is an extension of w ,  what we need to show is that 

By (3)  and the previous remark we can see that the RHS above equals the fraction of 
walks starting at w ( n )  and leaving the box of size R before hitting { w ( O ) ,  . . . , w ( n ) }  
whose first step is to the point w ( n  + 1 ) .  
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Suppose 5 = [t(O), . . . , T ( J ) ]  is a simple random walk which produces w, when 
the loops are erased. Let D = sup{j: [(j) = U (  n)}. Then by definition of the loop- 
erasing procedure one can easily see that 

{ w ( O ) ,  . . . , w ( n ) I  j > D. ( 5 )  

However, given D and [&(O), , , . , ( ( D ) ] ,  the only restriction on [(j),j > 0, so that 
the part of the path before D is not erased, is given by (5). Hence, given [ ((O), . . . , [( D ) ]  
which produces [ w ( O ) ,  . . . , w ( n ) ]  upon loop erasing, one can extend t ( j ) ,  j >  D, any 
way which avoids { w ( O ) ,  . . . , w ( n ) } ;  the probability that t ( D +  1) = w ( n  + 1) is then 
given by (4). Note, by the definition of 0, that if f ( D + l ) = w ( n + l ) ,  then 5 will 
produce U,+,  upon loop erasing. This gives the result. 

While the transition probability (Laplacian random walk) viewpoint for the process 
is nicer from a conceptual point of view, it is the loop-erased characterisation of the 
walk which has allowed mathematically rigorous analysis of the model. This model 
is the only model for SAW for which the critical dimension is known rigorously and 
for which the behaviour at the critical dimension can be described (for the counting 
measure and the related Domb-Joyce model, rigorous results are known above the 
critical dimension four (see Brydges and Spencer 1985, Slade 1986)). In Lawler (1980), 
it was shown for d > 4 that the loop-erased process has the same behaviour as the 
simple random walk. More precisely, if w ( n )  denotes the position of the nth step, 
then (1w( n))’) - cn for some c > 0 and (cn)-l’*w( n )  approaches a Gaussian distribution. 
For d = 4, it has been shown (Lawler 1986) that (Iw(n)12) - b,n, where b, is a logarithmic 
correction term, and again that ( b,n)-”2w ( n )  approaches a Gaussian distribution. 
Rigorously it is known that b, grows at least as fast as (log and no faster than 
(log n)’”. A very convincing, although not completely rigorous, argument gives that 
b, grows in fact like (log r ~ ) ” ~ .  

For d = 2  and 3 the long-range behaviour of (Iw(n)12) is unknown, although it is 
expected that it grows like n 2 ”  for some v > 4. Some numerical work of Lyklema and 
Evertsz, solving Laplace’s equation exactly, suggests v is near 0.8 for d = 2 ,  as compared 
to the expected v = 0.75 for the usual SAW. This method allowed calculation only up 
to 18-step walks. We expect that use of the loop-erased characterisation of the process 
should allow much more accurate numerical work. (The calculations of Lyklema and 
Evertsz allow them to analyse the Laplacian walk for all values of 7; however, the 
computer time needed for only a small number of extra steps is very large.) 

I would like to thank Alan Sokal for pointing out the work of Lyklema and Evertsz 
to me. 
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